抽签时先抽和后抽的概率是还是不是相同的概率顺序几率(为啥抽签法概率相同)
抽签时先抽和后抽概率一样吗
在这几个排列中,要确保第2个人中签,他一共有m种抽法。而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。
于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。
通常情况下来说依照固定的抽签规则,先抽和后抽的人的概率是相同的。正确使用词语,能够让这一类抽签规则的表达,以及整一个过程的规范化更加标准,给人清晰明了的指导。
相等。均等,无论谁先抽都是公平的。索性用一个普通情况来证明。假设总共有n个签,而其中m个是“中”的。第1个人抽中的机会显然是m/n。
抽签时中签的几率相同吗 抽签时中签的几率均等,无论谁先抽都是公平的。我们索性用一个普通情况来证明,假设总共有n个签,而其中m个是“中”的。第1个人抽中的机会显然是m/n。
另一人还是有机会抽中有物签。先抽抽到有物签概率为2/5;后抽抽到有物签概率:若先抽抽到有物签则有1/4,若先抽抽到白签,有1/二、因 此,在抽签中,先抽后抽都是相同的,与抽签的顺序无关。
通过上面的计算可知,抽签的顺序与中奖概率之间其实没有关系,无论先抽还是后抽,总体中奖概率都是相等的,可见抽签十分公平。在生活和工作之中,我们还会遇见一类和抽签很像的事情,但这类问题与抽签问题并不相同。
抽签先抽和后抽概率一样么?为啥
于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。
两种情况。若先抽放回,则保证总数一样。抽中概率为一样的。如:共有三个球,前者抽中奖概率为:1/后者抽中奖概率为:1/3 若先抽不放回,若先抽者没中,则后抽者抽中概率更大。
其实也就是说此问题还有更简单容易的想法。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。
抽签时先抽和后抽的中签机会均等吗?
于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。
抽签时先抽和后抽概率一样。抽签法是将调查总体的每个单位编号,再任意抽取号码,直到抽足样本的方式方法。抽签原理来自全概率公式,指抽签顺序和中签概率无关。
其实也就是说此问题还有更简单容易的想法。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。
先后抽签是公平的吗,先抽后抽概率是相同的吗?答案是:取决于先抽的人抽中签之后是还是不是马上打开看。
两种情况。若先抽放回,则保证总数一样。抽中概率为一样的。如:共有三个球,前者抽中奖概率为:1/后者抽中奖概率为:1/3 若先抽不放回,若先抽者没中,则后抽者抽中概率更大。
抽签时先抽和后抽中签的几率相等的。抽签时先抽和后抽中签的几率是均等的。无论怎么抽签,最后抽出来的结果不外乎是n个签的一个排列组合而已。抽签无论谁先抽都是相等公平的。
抽签时先抽和后抽中签的几率是相等的还是不等的?
出现两只以上新股同时上网发行时,应优先考虑冷门股,人少的地方中签的机会可能更高些。此外,投资者可集中资金出击一只新股假如同时发行3只新股,就应该选准一只全仓进行申购,来提升中签率。选择合理下单时间。
数学家做过严格的计算,先后概率是一样大。你说的仅有一张从人的心理来说先抽的话自我感觉更佳,所以建义你还是先抽也可以。
这是一个教科书范例级的古典概率论问题了。答案是:取决于先抽的人抽中签之后是还是不是马上打开看。假如先抽的人抽签之后并不马上打开看,而是等所有人都抽完之后再打开,那么先抽和后抽的人抽中某个签的概率是相同的。
于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。
抽签时中签的几率相同吗 抽签时中签的几率均等,无论谁先抽都是公平的。我们索性用一个普通情况来证明,假设总共有n个签,而其中m个是“中”的。第1个人抽中的机会显然是m/n。
以下打新股的窍门可来提升中签率:打新股的市值是可以重复使用的,所以可以将所有资金都用于申购新股中签几率会更高。
抽签时先抽和后抽概率一样。抽签法是将调查总体的每个单位编号,再任意抽取号码,直到抽足样本的方式方法。抽签原理来自全概率公式,指抽签顺序和中签概率无关。
证明:由于即便第1个抽的抽到有物签,另一人还是有机会抽中有物签。先抽抽到有物签概率为2/5;后抽抽到有物签概率:若先抽抽到有物签则有1/4,若先抽抽到白签,有1/二、
抽签时先抽和后抽中奖的几率是
于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。
换个解释也可以:你可以简单容易的看出任何人抽不中的概率都是2/3)所以选B,任何人抽中的机会都是1/3,任何人抽不中的机会都是2/3,因此抽签是公平的。
概率相同,不过掌控于谁手中不一定。极端的例子,二个人,抽两个签。只要第1个人抽完了,后一个人也就确定了不用抽了,二个人的概率都是1/二、
通过上面的计算可知,抽签的顺序与中奖概率之间其实没有关系,无论先抽还是后抽,总体中奖概率都是相等的,可见抽签十分公平。在生活和工作之中,我们还会遇见一类和抽签很像的事情,但这类问题与抽签问题并不相同。
抽签时先抽和后抽中签的几率是()的。
而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。
于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关,无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。